RIT2021

SPACE

INNOVATION GROWTH COOPERATION

SPACE INNOVATION FORUM

October 12-13, 2022

R&D PROJECTS

Marta-Lena Antti, LTU, Eng. Materials Anna Öhrwall Rönnbäck, LTU, Product Innovation Erik Nyberg, LTU, Machine Elements

October 12-13, 2022

BACKGROUND

INNOVATION PHD-STUDENTS AND THE GRADUATE SCHOOL OF SPACE TECHNOLOGY

IDEA PITCH

FOR MORE INNOVATION PHD-STUDENTS AND A <u>NATIONAL</u> GRADUATE SCHOOL OF SPACE TECHNOLOGY

National Graduate School of Space Technology

Atmosphere and up...

https://youtu.be/fAAXsER57h8

SUMMARY

WHAT HAVE WE ACHIEVED SO FAR?

✓ Technical solutions and increased knowledge

- ✓ Educated persons
- ✓ Increased collaboration with industry and between research subjects
- ✓ Innovation capability and Sustainability awareness
- ✓ Ongoing work together with our partner companies, OHB Sweden, Isar Aerospace, GKN Aerospace Engine Systems, SSC

Autonomous Visual Navigation around Small Celestial Bodies: NRFP-4

High-fidelity simulation framework capturing realistic image

Multi-sensor fusion based pose estimation

LiDAR-Visual Fusion based Simultaneous Localization and Mapping: NRFP-4

Visual SLAM algorithm: (a) Detects feature points in each frame, (b) Associates Lidar point clouds with detected features, (c) Correlate between two successive frames, (d) Localize satellite in relative frame, (e) while enable provision for reinitialization for repetitive correction Estimated satellite trajectory based on autonomous relative navigation

Green Corridor to Space an optimal test facility for modern rocketry

Improved materials, cooling-, injection- and ignition systems, fluid-structure interaction, combustion instabilities, nozzle design (de Laval type), 3D printed technologies – injector, combustion chamber, and nozzle, sustainable rocket fuels – with low carbon-to-hydrogen ratio (e.g., hydrogen, methane, propane, and metals).

LTU: Jihyoung Cha, Murugesan Ramakrishnan, Olle Persson, Alexis Bohlin **ISAR:** Josef Fleischmann, Felix Kühne + LTU MSc thesis students

Ultrafast Laser Diagnostics used at tests/research of rockets, can it be done?

- Special challenges for practical/industrial applications of laser diagnostics, e.g.
 1. high-pressure, 2. perturbations of the platform, 3. limited optical access
- No standard exists for such advanced measurement capacity performed in-situ

In-Situ Ultrafast Laser Diagnostics vs. Inspection Methods

Technology Insights: Infrared Thermography

Ultrafast CARS Thermometry Tutorial

Making a portable CARS imaging system a reality

White Paper with Coherent Corp. "Combustion analysis with CARS – It Really is Rocket Science"

RIT 2021

Talks citing RIT 2021:

ESULaB 2022 COMBURA 2022 ECONOS 2022 ERCOFTAC 2022 Int. Symposium on Combustion 2022

Publications citing RIT 2021:

Combustion and Flame (2022) Optics Express (2022) [Optica News] Proceedings of the Combustion Institute (2022)

Design Uncertainties in Additive Manufacturing

- RIT PhD student start 2020
- Continuation of research on design artefacts
- · In-depth study on impact of surface roughness

2nd iteration

• Implementation and validation!

A Framework for Creativity in Design for Additive Manufacturing

- A sneak peak of the framework presented in the thesis
- A "creativity wheel" for adopting AM in design
- Support engineers to make full use of their creative abilities while introducing AM in design

Stainless steels for rocket engines

- Extreme environment, from -196°C to +750 °C
- Laser and powder bed manufacturing (AM)
- 3 alloys, 316L, 21-6-9 and 316GAS
- Residual stresses from AM
- Industrially adapted method for measurements of residual stresses

TRACKING OF SPACE OBJECTS USING AURORAL IMAGES

IRF and SSC develop automated image analysis and space object orbit determination using ALIS_4D

- Project postdoc: Gabriel Borderes Motta
- SSC principal investigator: Hanna Sundberg
- IRF principal investigator: Johan Kero

image credit: Gary Meader; from the book "Night Sky With The Naked Eye" by Bob King

Recycling at the highest level

Space debris: In search of circularity for reuse of spacecraft material

> PhD candidates: Margot Clauss, Space Systems Bernd Weiss, Product Innovation

Supervisors: René Laufer, professor (chair) Space Systems Anna Öhrwall Rönnbäck, professor (chair) Product Innovation

We help Earth benefit from space

Innovation capabilities study – INNOCAP

William Johansson (SSC) & Lisa Larsson (LTU) Karin Holmqvist (SSC) & Anna Öhrwall Rönnbäck (LTU) Linda Lyckman (SSC) & Margareta Groth (LTU)

WHAT IS OUR NEXT STEP?

PhD level courses

Graduate School in Space Technology

- ✓ Product Innovation for Aerospace Applications: 7.5 HEC
 ✓ Oct 2022 (initiated)
- ✓ Cross-disciplinary projects with Aerospace Application: 4–8 HEC
 - ✓ PhD Resource Pool
 - ✓ Spring 2023

SARC

Product Innovation for Aerospace Applications

Aeronautics Airplane Space

7,5 credits Start date: 4 October 2022 University: Linköping University, Luleå University of Technology Target group: PhD Student, Industry Academy: Product Development Academy (PDA)

https://kunskapsformedlingen.se/

PhD Resource Pool

Collaborative innovation tool

✓ Collaboration incentives for PhD candidates

- ✓ Education: Cross-disciplinary projects
- ✓ Publications: Co-authorship matching
- ✓ Outreach: Academia industry network

Expected outcomes

	A	4.00
 ✓ PhD-tailored education ✓ Demonstrate skills ✓ Potential employer network 	 ✓ Find needed competence ✓ Perform pre-studies ✓ Demo capabilities ✓ Outreach 	 ✓ Find needed competence ✓ Perform pre-studies ✓ Screening of research potential

THANK YOU

SPACE

INNOVATION

GROWTH COOPERATION